Distributed Sampling Storage for Statistical Analysis of Massive Sensor Data

نویسندگان

  • Hiroshi Sato
  • Hisashi Kurasawa
  • Takeru Inoue
  • Motonori Nakamura
  • Hajime Matsumura
  • Kei'ichi Koyanagi
چکیده

Cyber-physical systems interconnect the cyber world with the physical world in which sensors are massively networked to monitor the physical world. Various services are expected to be able to use sensor data reflecting the physical world with information technology. Given this expectation, it is important to simultaneously provide timely access to massive data and reduce storage costs. We propose a data storage scheme for storing and querying massive sensor data. This scheme is scalable by adopting a distributed architecture, fault-tolerant even without costly data replication, and enables users to efficiently select multi-scale random data samples for statistical analysis. We implemented a prototype system based on our scheme and evaluated its sampling performance. The results show that the prototype system exhibits lower latency than a conventional distributed storage system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

The Research of Data Storage and Retrieval Scheme for Wireless Sensor Networks

Recently, several data storage schemes have been developed to store massive sensor data in the wireless sensor networks (WSNs). A crucial task of WSNs is to disseminate useful information to users efficiently and handle the data storage architecture incorporating their extreme resource constraints. A Distributed Index based Multi-resolution Storage Architecture (DIMSA) for data storage and retr...

متن کامل

Multicast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach

Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...

متن کامل

Distributed Storage and Parallel Processing in Large-Scale Wireless Sensor Networks

A Large-scale Wireless Sensor Network (LWSN). such as an environment monitoring system deployed in a city, could yield data on the order of petabytes each year. Storage and computation of such vast quantities of data pose difficult challenges to the LWSN, particularly because sensors are highly constrained by their scarce resources. Distributed storage and parallel processing are solutions that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012